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ABSTRACT The researchers have shown broad concern about detection and recognition of fraudsters
since telecommunication operators and the individual user are both suffering significant losses from fraud
activities. Researchers have proposed various solutions to counter fraudulent activity. However, those
methods may lose effectiveness in fraud detection because fraudsters always tend to cover their tracks by
roaming among different telecommunication operators.What is more, due to the lack of real data, researchers
have to do simulations in a virtual scenario, which makes their models and results less persuasive. In our
previous paper, we proposed a novel strategy with high accuracy and security through cooperation among
mobile telecommunication operators. In this manuscript, we will validate it in a real-world scenario using
real Call Detail Records(CDR) data. We apply the Latent Dirichlet Allocation (LDA) model to profile
users. Then we use a method based on Maximum Mean Discrepancy (MMD) to compare the distribution
of samples to match roaming fraudsters. Cooperation between telecommunication operators may boost the
accuracy of detection while the potential risk of privacy leakage exists. A strategy based on Differential
Privacy(DP) is used to address this problem. We demonstrate that it can detect the fraudsters without
revealing private data. Our model was validated using simulated dataset and showed its effectiveness.
In this manuscript, experiments are performed on real CDRs data, and the result shows that our method
has impressive performance in the real-world scenario as well.

INDEX TERMS Data privacy, data mining, security, real-world scenario, spam detection.

I. INTRODUCTION
Telecommunication operators and the individual user are suf-
fering significant losses from fraud activities with the increas-
ing scale of the mobile phone user. In order to detect the
fraud activity, different strategies are proposed, which apply
methods such as machine learning and statistical model.
Bolton et al. [1] demonstrated how a statistical model could
be used to detect fraudsters. Weatherford [2] adopted neural
networks to make use of historical records to generate the
patterns of legitimate users for the long-term. Works [3], [4]
showed that evidence of fraud and fraudulent activities hides
in a vast amount of data, and it is possible to apply statistical
techniques and artificial intelligence to uncover those hidden
fraudsters. Recently deep learning was used to process data
from physical world [5], [6], which brought new ideas to
the detecting fraudsters from CDR data. Diffusion networks
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and secure transmission are discussed in a broader view of
the scurrility issue [7]–[9]. The industry developed software
to detect fraud. One early example was that the FICO Fal-
con fraud assessment system in the banking industry. The
company TransNexus developed a system called NexOSS to
detect fraudsters who use VoIP network.

Notably, researchers have shown deep concern about
the detection and recognition of fraudsters. Researchers
proposed various solutions to counter fraudulent activity.
Becker et al. [10] differentiated legitimate and fraud accounts
by a threshold which was found by utilizing historical data.
However, there are too many types of user behavior in a real-
world scenario. Thus this threshold method is inclined to
misclassify normal users as fraudsters. They also introduced
a signature-based approach which profiles the behavior of
users, but it needs a more efficient profiling method. For the
profile method, Yusoff et al [11] used a statistical model like
Gaussian Mixed Model to profile users.
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However, there are still many challenges in this area.
In a real-world scenario, fraudsters always tend to cover
their tracks by roaming among different telecommunication
operators while solutions are intendedly built for only one
telecommunication operator. For example, Olszewski [12]
introduced a model using Latent Dirichlet Allocation (LDA)
to profile users, where an automatic threshold is built to
detect fraudsters in one telecommunication operator. The
lack of data also brings difficulties to researchers. Models
hardly learn the behaviors of fraudsters from data with a
limited amount of feature, and there is usually only a small
number of fraudulent call samples. Henecka et al. [13] pro-
posed a method to detect fraud across multiple databases,
while only one feature (destination) is used to profile users.
Ajmal et al. [14] proposed a framework to achieve privacy-
preserving collaboration across multiple service providers to
combat telecoms spam. Azad and Morla [15], [16] intro-
duced a method to filter smart spammers in a decentralized
schema with privacy-aware. Their model needs improvement
on matching strategy for they only focus on the distance
of two signatures. What is more, without real data source
from the telecommunication operator, researchers have to do
simulations to validate their model in a virtual scenario using
simulated data, whichmakes their models and results less per-
suasive. Finally, for the real-world scenario, telecommunica-
tion operators need to exchange data if they want to cooperate
in detecting roaming fraudsters. Data exchange may cause
privacy violation problem. Thus privacy preserving policy is
in urgent need to protect the privacy of legitimate users.

Our previous work(the conference version) [17], in which
we proposed a novel strategy with high accuracy and security
through the cooperation among mobile telecommunication
operators. We validated it with simulated data and showed
its effectiveness. In this manuscript, we upgrade the model
concerning the time complexity reducing in matchingmodule
and measurement of the safety of privacy. More importantly,
we construct a new scenario with real-world CDRs dataset
to evaluate our model, and it proves to be useful in the
evaluation.

Our contributions can be summarized as the following:
1) We propose a Cooperative Fraud Detection model to

uncover the sophisticated fraudsters who take advan-
tage of transmitting phone calls among multiple opera-
tors to conceal their malicious behaviors.

2) We propose an efficient and accurate profiling method
to profile the behavior of mobile phone users, a com-
prehensive and accurate matching method to detect
fraudsters. Meantime, We prevent privacy leakage in
the cooperation model efficiently.

3) We construct a real-world scenario using a set of real
CDRs data provided by a leading telephony provider
in China to validate the practicability of our model.
The result shows that our model still has an impressive
performance in a real-world scenario.

A set of experiments are conducted using real-world
dataset, and we compare them with previous work to

evaluate the accuracy and efficiency of our detection model.
The Receiver Operating Characteristic (ROC) curves and
the value Area Under Receiver Operating Characteristic
(AUROC) are used to evaluate the accuracy of our model.
Moreover, The scale of data is taken into consideration, and
different parameters are set to show the influence of features
of the datasets. The result shows that our detection model
also has high accuracy, efficiency, and can prevent privacy
disclosure efficiently in a real-world scenario.

The remainder of this work is organized as follows.
Section II briefly introduces the relevant background knowl-
edge including Latent Dirichlet Allocation(LDA), Maximum
Mean Discrepancy(MMD) and Differential Privacy(DP).
Section III describes our Cooperative Fraud Detection model
and its application scenarios. Section IV to VI completely
introduce our methods. Section VII show the evaluation of
our work in a real-world scenario. A conclusion are drawn
in Section VIII.

II. PRELIMINARIES
This sectionwill introduce the basics of Latent Dirichlet Allo-
cation(LDA) model, Maximum Mean Discrepancy(MMD)
and Differential Privacy(DP).

A. LATENT DIRICHLET ALLOCATION (LDA)
Blei et al. [18] firstly introduced Latent Dirichlet Alloca-
tion(LDA), which is a generative probabilistic model for
document collection or corpus. LDA is a three-level Bayes
model, where a hidden set of topics canmodel each document
as a finite mixture, and distribution over words models each
topic. LDA can be applied in our scenario because each
account can be regarded as a document, and each feature is
the words. Thus the hidden identities of an account are the
latent topics.

The process of LDA to generate a document is defined as
follows:
Definition 1: For each document w in a corpus D:

(1)Choose N ∼ Poisson(ξ ). (2)Choose θ ∼ Dir(α). (3)For
each of the N word wn: Choose a topic zn ∼ Multinomial(θ ).
Choose a word wn from p(wn|zn, β).
Where the w denotes a document, wn denotes the n-th word

in the document sequence, N denotes the number of words in
a document, z denotes the topic.

B. MAXIMUM MEAN DISCREPANCY (MMD)
Gretton et al. [19], proposed a framework for analyzing and
comparing distributions, using statistical tests to determine if
two samples are drawn from different distributions. Firstly,
the problem is defined as follows:
Problem 1: Let px and py be Borel probability measures

defined on domainX . Given observations X := {x1, · · · , xm}
and Y := {y1, · · · , yn}, drawn independently and identically
distributed (i.i.d.) from px and py, respectively, can it decides
whether px 6= py?
To solve this problem, there is the Lemma.1:
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Lemma 1: Let (X , d) be a metric space, and let px , py be
two Borel probability measures defined on X . Then px = py
if and only if Ex∼px (f (x)) = Ey∼px (f (y)) for all f ∈ C(X ),
where C(X ) is the space of bounded continuous functions
on X .
Therefore a rich and general function classes F will

be used to define MMD which can measure the disparity
between two samples, the definition is:
Definition 2: Let F be a class of functions f : X → R

and let px , py,X ,Y be defined as above. The maximum mean
discrepancy (MMD) is defined as:

MMD[F , px , py] :=supf ∈F (Ex∼px [f (x)]− Ey∼py [f (y)]) (1)

C. DIFFERENTIAL PRIVACY (DP)
Security of a statistical database must be ensured.
Dalenius [20] described a desideratum that none individual
information should be learned without access to the database.
However, Dword [21] proved it is impossible later, but he
proposed a new model, which was called Differential Pri-
vacy(DP), to ensure that, any given disclosure will be, within
a small multiplicative factor, just as likely whether or not the
individual participant in the database, i.e., the presence of an
individual data would not be the cause of information disclo-
sure. The rigorous definition of DP is showed in Definition 3:
Definition 3: A randomized functionM gives ε-differential

privacy if for all data sets D1 and D2 differencing on at most
one element, and all S ⊆ Range(M ):

Pr(M (D1) ∈ S) ≤ exp(ε)× Pr(M (D2) ∈ S) (2)
By applying DP, users are allowed to interact with the

database only by statistical queries. Other privacy methods
such as homomorphic encryption usually publish a variant
version of the original database, which provides less effi-
ciency than DP. What is more, DP can prevent risk caused by
leakage of encryption keys. Moreover, it can handle complex
and various real data better and block more kinds of attack.

Random noise whose magnitude is chosen as a function
of L1-sensitivity is added to each query result to achieve DP
when the result is numeric. L1-sensitivity, which is showed in
Definition 4 is the largest change a single participant could
have on the output to query function.
Definition 4: For f : D→ Rd , the L1-sensitivity of f is:

4f = maxD1,D2 ||f (D1)− f (D2)|| (3)

for all D1,D2 differing in at most one element.

III. COOPERATIVE FRAUD DETECTION MODEL AND
ATTACK MODEL
This section presents the application scenarios for our work.
We propose our cooperative fraud detection model, as well
as the attack model, including the fraud forms and possible
privacy attacks.

A. APPLICATION SCENARIOS
To detect the fraudsters accurately and efficiently, we pro-
pose a model based on the cooperation of multiple

FIGURE 1. Application scenarios.

telecommunication operators. Our application scenario is
shown in Figure.1. All of the operators have a database of
their user data, but only one of them possess a fraud accounts
list, so the other operators can apply our model to find out
those fraudsters in its database even hidden ones.

In this manuscript, to validate our model’s practicability,
we construct a real-world scenario using a set of call data
records(CDRs) data, which will be discussed in Section VII
in detail.

B. OUR COOPERATIVE FRAUD DETECTION MODEL
The traditional methods detect fraudsters in one telecommu-
nication operator. They use various profiling methods to pro-
file the characteristic of individual accounts through features
such as duration, destination. Classification algorithm can be
used to detect the fraudsters due to the observation that fraud
accounts always behave differently from legitimate users.

However, experienced and sophisticated fraudsters also
have some countermeasures. They roam among multiple
telecommunication operators to hide their tracks. It is hard
for traditional methods to deal with those fraudsters. How-
ever, for the fraudster always wants to save cost, it can be
assumed that a fraudster would have the same behaviors in
two operators, so the characteristics of two accounts would
be alike. According to this assumption, a cooperative fraud
detection model between two telecommunication operators
is built as follows:

1) Get the CDRs from operator A.
2) Profile the behavior of fraud accounts in operator A

using our profile module based on LDA.
3) Use our match module based onMMD to determine the

similarity between accounts in operator A and another
operator B.

4) Find out fraudsters in operator B by setting a threshold.
Illustration of our model is shown in Fig.2.

C. ATTACK MODEL
In this manuscript, the following attack models are consid-
ered:

• Conventional scam: In this kind of attack, fraudsters
make phone calls to a large number of legitimate users
to fool them into paying extra fees or other fraud
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FIGURE 2. Cooperative fraud detection model.

activities. This kind of attack has unique behavior pat-
tern and features. For example, they must make calls
very frequently, and their target’s locations should be
distributed throughout a vast range of place. As a result,
the fraudsters will be detected accurately using the pro-
filing method. However, similar to other fraud detection
problem, there are only a few fraudulent call samples for
us to study the behavior pattern of fraudsters. We deal
with this problem by proposing our cooperation model
among multiple telecommunication operators.

• Subscription scam: In this kind of attack, fraudsters
avoid paying fees by changing their device and service,
for example, fraudsters sign up a new account in a new
operator to continue his fraud activity. Traditional meth-
ods which focus on only one mobile operator cannot
handle this kind of fraudsters efficiently and accurately.
Our cooperation model contains an accurate matching
method based on MMD, and it can detect this type of
fraudsters without extra cost.

• Privacy attack: This attack is nothing about fraud; it is an
accessory problem coming with our cooperation model.
In our model, all operators can make queries to all
other operator’s database, resulting in a risk of personal
privacy leakage. For example, attackers would get call
duration of 101st call record if they make queries for the
sum of the call duration of first 100 and first 101 call
records. Even when the database only answers queries
for sum statistics, the attackers can make such queries
repeatedly to get the privacy information through the
difference of answers. Sharing access to each others
database is the fundamental of our fraud detection coop-
eration model, so it is impossible to prohibit making
queries or stopping giving answers. To address this prob-
lem, we propose amethod based onDP to block this kind
of attacks.

IV. PROFILING MODULE
This section describes the profiling module based on
Latent Dirichlet Allocation(LDA) to profile the behavior of
accounts.

A. NOTATIONS OF VARIABLES
K : Number of latent class
ξ : The parameter of Poisson distribution
α : It is the parameter of prior Dirichlet distribution over

the latent class
V : The number of features
β : It is K × V matrix, whose rows denote the parameters

of the Multinomial distributions
a : Denote the feature vector.
N : Denote the number of iterations.
0 : Denote the Gamma Function.
z : Denote the class
zi : Denote the ith class

B. USING LDA MODEL TO PROFILE USER
Mobile operators usually use Signature Based Fraud Detec-
tion to detect fraudsters, but it requires an accurate and effi-
cient signature generating method. The kernel problem to
profile user behavior is how to take advantage of historical
data to find the user’s behavior pattern, as well as to classify
different types of user accurately.

LDA model was used to find the topic probabilities which
provide an explicit representation of a document. LDAmodel
is used to profile users inmobile operators. Data of an account
can be viewed as a document, and the features or statics
of an account are the words in the document. So the topics
are referred to the unknown types, and these types may be
legitimate user, fraud type A or fraud type B.

It is a three-level hierarchical Bayesian model. In our
model, accounts are represented as a finite mixture over
latent class, and distribution over multinomial represents the
classes. In our method, there are seven features which are
duration, ringtime, callfrequency, clock , source, destination
and callresult asmultinomial. Thus, an account is represented
by probabilities vector of the K lass, and probabilities of the
seven features represent a class.

An account can be generated from the LDA model
using the following procedure in Algorithm 1. The hidden
variables θ and z are estimated using variational approxi-
mation. A k-dimensional Dirichlet random variable θ can
take values in the (k − 1)-simplex. A k-vector θ lies in the
(k − 1)-simplex if:

θi ≥ 0,
k∑
i=1

θi = 1 (4)

And has following probability density on this simplex:

p(θ |α) =
0(

∑k
i=1 αi)∏k

i=1 0(αi)
θ
α1−1
1 · · · θ

αk−1
k (5)

And the parameters α and β of this model can be estimated
by using the EM algorithm(α and β maximize the (marginal)
log likelihood of the data).

Given the parameters α and β, the joint distribution of a
latent class mixture θ , and z. The vector of V features a is
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Algorithm 1 generating Accounts Data Using LDA
Require: ξ , α, β
Ensure: a
1: randomly draw the number of iterations N ∼ Poisson(ξ );
2: randomly draw the parameter for generating account

from the class distribution θ ∼ Dirichlet(α);
3: for each of the N multinomials ai do
4: draw the class zi, z ∼ Multinomial(θ );
5: draw the feature ai from p(a|zi, β) which is a multino-

mal probability distribution vector of features a in the
class zi, which is in the row of the matrix-parameter β

6: end for
7: return a;

given by:

p(θ, z, a|α, β) = p(θ |α)
K∏
i=1

p(z|θ )p(a|zi, β) (6)

The marginal distribution of an account in the mobile
phone operator is defined as:

p(a|α, β) =
∫
p(θ |α)(

N∏
i=1

N∑
i=1

p(zi|θ )p(ai|zi, β)) (7)

For each account, refer to the work of Girolami and
Kabán [22], the distribution is calculated as:

p(aLDA) =
∫
4

p(a|θ )p(θ |cn)dθ

=

K∑
k=1

p(aLDA|k)Ep(θ |cn){θk}

≈

K∑
k=1

p(aLDA|k)ED(θ |cn){θk}

=

K∑
k=1

p(aLDA|k)
γkn∑K
i=1 γin

(8)

where aLDA represents an account, cn denotes the phone
calls of this account, γin denotes the variational free param-
eter. ED(θ |cn){θk} denotes expectation of discrete random
variable θk with respect to D(θ |cn). Ep{θk} denotes expecta-
tion of discrete random variable θk with respect to p.

V. MATCHING MODULE
We propose a matching method for two profiles of mobile
phone users based on MMD. Any difference between the two
profiles could be the key to distinguish normal and fraud
users, and MMD can give the similarity of two distribution
efficiently. Our model defines that if two samples gener-
ated by our profiling module from two mobile accounts are
derived from the same distribution, they are the same type of
user.

A. NOTIONS OF VARIABLES
Pi : the profile of the ith account in mobile phone

operators.
pi : the distribution of Pi.
xi : the ith features of the profile Px .
yi : the ith features of the profile Py.
F : the function class of f .
H : Reproducing Kernel Hilbert Space.
X : Compact Metric Space.
k : the Gaussian Kernel Function.
xc : tbe center of the kernel function.
σ : the width of kernel function which can control the

influence range of kernel function.
x∗ : the normalized features of the profile Px .
FraudA : the fraud list of operatorA.
FraudB : the fraud list of operatorB.
threshold : the parameter of our model which control the

tolerability of our model.

B. OUR MATCHING METHOD
In our model, the generated profile is denoted as Pi for every
account i. Essentially, each Pi is derived from distribution pi,
i.e. Pi ∼ pi. Assume that there is already a profile of fraud
account, say,Pi, and it is derived from a hidden distribution pi.
This fraud profile is used to compare with other account’s
profile to decide other accounts are fraudsters or not. Gener-
ally speaking, two profiles Pi ∼ pi and Pj ∼ pj need to be
compared to decide whether pi = pj, i.e. they are the same
type of users.

Two arbitrarily profile samples in the database, Px and Py:

Px := [x1, x2, . . . xm]

Py := [y1, y2, . . . yn] (9)

There is a unspecified function class F , and the functions
in { can help us to measure the disparity between pi and pj.
According to the Definition.2, the Maximum Mean Discrep-
ancy of these samples as 1.0. And a biased empirical estimate
of the MMD as:

MMDb[F , px , py] :=supf ∈F (
1
m

m∑
i=1

f (xi)−
1
n

n∑
i=1

f (yi)]) (10)

To estimate the MMD, an appropriate function class which
is rich enough to identify whether px = py is needed gener-
ally, and it needs to be restrictive enough to provide useful
finite sample estimates. If the class F is the unit ball in a
Reproducing Kernel Hilbert Space(RKHS) H , the empirical
MMD can be computed efficiently. Therefore there is the
Theorem.1:
Theorem 1: LetF be a unit ball in a universal RKHSH ,

defined on the compact metric space X , with associated
kernel k(., .). Then MMD[F , px , py] = 0 IF and only if
px = py.
A witness function f is used to exhibit the maximum

discrepancy between two distributions. In ourmodel, f (x) and
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its empirical estimate f̂ (x) are:

f̂ (x) ∝ 〈φ(x), µ[px], µ[py]〉

= Ex ′∼px [k(x, x
′)]− Ey′∼py [k(x, y

′)] (11)

f̂ (x) ∝ 〈φ(x), µ[Px], µ[Py]〉

=
1
m

m∑
i=1

k(xi, x)−
1
n

n∑
i=1

k(yi, x) (12)

where the k(xi, x) is a kernel function. In ourmodel, the Gaus-
sian Radial Basis Function(RBF) Kernel is used to formulate
the accurate MMD between px and py, which is defined as
follows:

k(x, xc) = Exp(
−(||x − xc||)2

(2σ )2
) (13)

In our model, an appropriate kernel width σ should be
set carefully to assure the accuracy of MMD however, if
σ = 0 or σ → ∞, the empirical MMD is zero for
any two distribution samples. Without losing generality,
we set the σ to be the median distance between a point
in the sets of all points in the P to avoid the extreme
situation.

Finally, the equations (10), (12), (13) conclude the Maxi-
mumMean Discrepancy of any two profiles generated by our
profiling module.

The Algorithm 2 describes the pseudo code to predict the
fraud account.

Algorithm 2 Predict the Fraud Account
Require: profile Pi for every accounts, FraudB, threshold
Ensure: FraudA.
1: for each account i in operatorA do
2: set the minimum = ∞
3: for each account j in FraudB do
4: determine theMMD(Pi,Pj) between two accounts i

and j
5: if the MMD(Pi,Pj) is lower than the minimum of i

then
6: update the minimum
7: end if
8: end for
9: if the minimum is lower than threshold then
10: add account i into FraudA
11: end if
12: end for
13: return FraudA;

In order to save time cost in this step, fraud accounts
can be clustered into a smaller set under the condition that
They are representative enough to replace all fraud account
profiles.We use the k-meansmethod to cluster fraud accounts
as Fraudcluster . In the above algorithm, replace FraudB with
Fraudcluster to get a faster algorithm.

VI. DIFFERENTIAL PRIVACY
This section introduces a privacy preserving method based
on DP. It is used when the operators exchange informa-
tion or make database queries.

A. NOTIONS
Gk (S) : the sum of k powers of all elements in set S, e.g.

G2(a, b, c) = a2 + b2 + c2

Xi,j: the jth feature of the ith sample Xi
Yi,j: the jth feature of the ith sample Yi

B. THE METHOD BASED ON DP
To calculate the similarity between two accounts in different
operators, say, operator A and B. They have to give out infor-
mation about the involved account, as the witness function
of MMD requires. However, the operator must protect their
users’ privacy. In other words, operator B will not give the
operator A the exactly statistics feature of an account profile.

This problem can be solved by showing that the estimate of
the witness function of MMD can be expressed as an expres-
sion of statistics on an account profile. Operator A computes
the estimate of the witness function value on an account
profile by making queries for statistics on that account in
operator B. And operator A provides B with statistics which
B needs to compute the estimate of witness function value
on that account profile in operator B, so the MMD value is
calculated without directly showing accounts profile to each
other. Then noise to the query results to ensure that privacy
attackers cannot get the attributes of an accounts specific call
record, based on the DP.

The estimate of the witness function of MMD can be
approximately expressed as expression of statistics on the
accounts profile such asGk (xi) andGk (yi). Then function(12)
can be estimated without the knowledge of accurate value
of yi. Let Yk =

yk
2σ , Xj =

xj
2σ , and according to kernel

function(13), there should be:

f (x̂j)=
1
m

m∑
i=1

Exp((||Xi−Xj||)2)−
1
n

n∑
k=1

Exp((||Yk − Xj||)2)

(14)

As mentioned above, σ is set to be the median distance
among all point pairs. Because A doesn’t know the exact
value of yk , A regards all xi as P. If the account in operator
A is the same kind of fraudster as the fraud account in B that
is compared with the account in A, the distance between yi
and xj is in the range of distance between all other xi and xj
with very high probability. Therefore, in this case, for all Yk :

||Yk − Xj|| ≤ 1 (15)

Consider series expansion:

Exp(t) =
inf∑
i=0

t i

i!
(16)
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Construct a function r(t):

r(t) =
Exp(t)− (1+ t + t2

2 +
t3
6 )

Exp(t)
(17)

It is easy to derive that r ′(t) = Exp(−t) t
3

6 > 0 when t > 0.
Thus when 0 < t ≤ 1, r(t) ≤ r(1) with error less than 2%.
We use 1+ t + t2

2 +
t3
6 as an approximate estimate of Exp(t)

to compute f̂ (xj). As shown above, the error of computing is
less than 2% of the largest k(yk , xj) with very high probability.
The error is negligible when detecting the same type of
fraudsters, for the MMD difference between two different
kinds of accounts is large.

There are K features of account in the mobile telecommu-
nication operators. The kernel function can be transformed as
follows:

Exp((||Yk − Xj||)2)

≈ 1+ (||Yk − Xj||)2 +
(||Yk − Xj||)4

2
+

(||Yk − Xj||)6

3

= 1+
K∑
s=1

(Y 2
k,s − 2Yk,sXj,s + X2

j,s)+
K∑
s=1

K∑
t=1

(Y 2
k,sY

2
k,t

+X2
j,sX

2
j,t − 4Y 2

k,sYk,tXj,t − 4X2
j,sXj,tYk,t + 2X2

j,sY
2
k,t )

+

K∑
s=1

K∑
t=1

K∑
r=1

(Y 2
k,sY

2
k,tY

2
k,r − 2Y 2

k,sY
@
k,tYk,rXj,r + · · ·

+ 2Y 2
k,sX

2
j,tX

2
j,r ) (18)

Therefore, f̂ (xj) can be computed given the values of
Gk (Yi,s) and other statistics on Yi without using the exact
value of Yk,s by querying for

∑k−1
l=1 Yl,s and

∑k
l=1 Yl,s.

At least noise has to be added to the results of these queries.
As for other statistics such as

∑n
k=1 Y

2
k,s Y

2
k,t Y

2
k,r , attackers

can’t get the value directly in the same way. Combining the
results of different queries and solving the equation group to
get the information is out of our privacy attack model, and the
computation complexity is high when n is large. Thus, only
the results of queries of

∑k
l=1 Yl,s are addedwith noise, which

also improves the availability of estimation result of MMD in
this way.

Lets consider the details of adding noises.
Theorem 2: For a query f: D≤ Rd , the mechanism Kf that

adds independently generated noise L with distribution

Lap(0, σ ) : Pr(L = x) =
1
2σ

Exp(−
||x||
2σ

) (19)

it gives 1f
σ
-differential privacy.

Note that
∑k

l=1 Y
q
l,s where (q > 1) can be calculated with

the values of
∑k

l=1 Yl,s and some symmetric polynomials
of Yl,s. We consider adding noise to the result of query for∑k

l=1 Y
2
l,s and computing the result of

∑k
l=1 Yl,s and the real

value of
∑

1≤l≤m≤k Yl,sYm,s. Attackers can’t get the value of
Yi,s directly from the results of quests for

∑
1≤l≤m≤k Yl,sYm,s

and
∑

1≤l≤m≤k−1 Yl,sYm,s. However:

Yk,s =

∑
1≤l≤m≤k Yl,sYm,s −

∑
1≤l≤m≤k−1 Yl,sYm,s∑k−1

l=1 Yl,s
(20)

the numerator can be calculated out accurately, and though
attackers can only get the perturbed value of denominator,
it cannot be too far from the real value, or would result in large
error in estimation of MMD. Thus Yk,s calculated in this way
is close to the real value of it.
Theorem 3: Let Mi each provides ε-differential privacy.

M (M1(D),M2(D), . . . ,Mn(D)) provides
∑n

i=1 ε-differential
privacy

Therefore, noise can be added as follows. For the result
of query for

∑k
l=1 Y

q
l from operator A, operator B answers∑k

l=1 Y
q
l + noise.

The confidence level of data which contains noise is also
defined. By the definition of our privacy attack, the difference
between the two queries can be used to infer our data, so the
confidence level will define how close the attacker to real
record data. When the noise is more significant than 0.5, two
records would be impossible to distinguish for their statistical
number is between 0 and 1. Thus

confidence level =
∫ 0.5

−0.5

1
2σ

Exp(−
||x||
2σ

)dx (21)

Since B will also make queries to A for statistics, double
noise would be involved in the final estimate result of MMD
function. They can contribute partial noise to each side as long
as the aggregated noise can promise differential privacy.
Lemma 2: Laplace distribution random variable L ∼

Lap(0, σ ) can be simulated by the sum of 2n random variables
as follows:

L =
n∑
i=1

(Gi + Hi) (22)

where Gi and Hi are independent Gamma distributed random
variables with densities following the formula:

Pr(Gi = x) = Pr(Hi = x) =
( 1
α
)
1
n x

1
n−1 e−

x
α

0( 1n )
(23)

where 0 is the Gamma Function
According to Lemma 2, operator A and operator B can

add Gamma noise to their results of queries, such that the
aggregated noise in the estimate of MMD is Laplace noise.

VII. EVALUATION
In this section, to evaluate the performance of our Cooperative
Fraud Detection Model and the Privacy Protection Module in
the real-world scenario, we conduct a set of experiments with
different datasets and simulations using PYTHON. In the
following, there are details of evaluations and results. We also
compare the results with our previous evaluations and extend
more experiments over the influence of different conditions
on accuracy.
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A. REAL-WORLD SCENARIO
We used generated data to evaluate the model and got rela-
tively satisfactory results. It showed that our model has better
performance than previous models. However, the generated
data cannot be used to validate the practicability of ourmodel.
Thus a real-world scenario is needed to evaluate our model.

A real-world scenario is constructed using a set of CDRs
data provided by a leading telephony provider in China. This
data set consists of more than one million CDRs and involves
about half a million users. It contains CDRs from 0:00 to
23:59, date at 15th March 2016, located at several cities in
China. There is also a well known fraud account list with high
reliability which comes from our another work [23].

With this dataset, the scenario can be constructed as fol-
lows. Without loss of generality, suppose there are only two
telecommunication operators, A, and B. It is accessible to
extend our model into multiple telecommunication operators
scenario. The dataset is divided into two parts by city to
represent twomobile telecommunication operators, i.e., oper-
ator A and B respectively. Suppose operator A possesses a
well known fraud account list while operator B does not, and
operator B wants to find out which users in his database are
fraudsters with the help of operator A.

In this scenario, users from both telecommunication oper-
ators should be profiled in the first place. Thus the Profile
module IV can be testified. Then operator B can use our
Matching module V to seek fraudsters in his database. In the
meantime, our Privacy module VI serve to protect the privacy
of users from operator A.

B. EVALUATION SETTINGS
Since there is a real-world dataset which has more than seven
features and more than one million CDRs, our model can
be evaluated in the constructed real-world scenario using the
following settings.

1) COOPERATIVE FRAUD DETECTION
To evaluate our cooperative fraud detection module, we con-
duct groups of basic experiments over different conditions.

In the real-world scenario, the scale of the dataset and
the number of accounts must be taken into consideration.
Operator A and B may have a large number of CDRs, or they
may be willing to contribute a small set of it, so to study the
influence of different scales is essential.

The details of number of accounts are in Table 1, where
N denotes the sequence number of experiments, na denotes
the number of accounts, nc denotes the average number of
CDRs for each account, nf denotes number of fraud accounts,
nt denotes number of types of accounts, nfea denotes number
of features. In order to testify our methods on real-world
records, our previous experiments shall be conducted again
over settings of experiment #1 to #6.

Experiment #1 is most similar to our previous experi-
ment settings, which has four features (duration, type, time,
cost). In this dataset, there are only two feature match them,

TABLE 1. The data scale setting.

TABLE 2. Features setting.

duration and time(i.e., clock). Cost should be linearly related
to duration so that this feature can be omitted, and type does
not matter if the target is to detect whether it is a fraud
account instead of what type of fraud it is. Experiment #2 to
#6 use five features (duration, ring time, call frequency, clock,
destination). The other conditions remain same.

In the real-world scenario, two telecommunication opera-
tors may have different CDR data storage system. The fea-
tures may not be the same as each other. Thus the number
of features of an account should be taken into consideration.
Different features are set in our experiments. The features
information are in Table 2, where N denotes the sequence
number of experiments, nfea denotes the group number of
features. fdur denotes which is the length it last, the CDRs of
fraudster should have similar call duration for the fact that the
called person would end this call once the fraudsters show a
similar sign. fring denotes ringing time, according to the obser-
vation of the real CDRdata, most calls endwith no answering,
so the fraudsters should stop calling after a fixed ringing
period. ffre denotes the call frequency. A fraudster should
have made a similar number of calls in a day. fclk denotes
clock, which is when this call begins. A fraudster should
make his fraud call densely around some time points. fsrc
denotes calling source region which is where the call from,
fraudsters usually do not travel around. fdes denotes called
destination region, which is where the call went. The fraud-
sters usually have a list of the phone number which should be
located nearby. fres denotes call result, which is how this call
processed by the operator if it is not ended usually, it has a
high probability to be a fraud account. X denotes this group
contains this feature, × denotes that this group does not con-
tain this feature. The feature settings of experiment #1 to #6
are shown in the first two lines of Table 2. Experiment #7 to
#12 is under dataset scale settings of experiment #5.

Each numerical feature has a different parameter for its
kernel function, which is in Table 3. These parameters are
derived by analyzing data in training set. Some nonnumerical
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TABLE 3. Parameters of kernel function in MMD.

TABLE 4. Parameters of matching module.

TABLE 5. Parameters of Laplace distribution Lap(µ, σ ).

features are not calculated using the kernel function, so they
are not listed here.

Data scale may grow explosively in real-world scenario,
so time complexity improvement is evaluated in Matching
Module. The performance will be evaluated under differ-
ent k which denotes the number of cluster centers of fraud
accounts’ CDRs. Detail of this experiment setting is shown
in Table 4. Five features are the same with Experiment #6.

2) DIFFERENTIAL PRIVACY
Privacy protection is always necessary. In the constructed
real-world scenario, operator A is willing to help operator B
to find fraudsters, but A does not want his user data to be
disclosed. DP is applied to theMMD result to protect privacy.
Data of experiment #3 is used to set the stimulation to evaluate
the influence of noise on the MMD result. It needs to find a
suitable level of noise where both our data privacy and sat-
isfactory detection accuracy can be ensured. The experiment
parameters setting are showed in Table 5. In our application
of privacy protection, the scale parameter of Laplace distri-
bution, i.e., σ , is needed to confirm. We choose four feature
which is duration, ringtime, frequency and clock , because
the Laplace distribution can only be applied to numerical
features.

Accordingly, it needs to evaluate how secure our data is.
There would be an evil attacker, and he tries to steal private
data. The confidence level of those stolen data is evaluated to
evaluate our privacy protection methods.

C. EVALUATION RESULTS
Receiver Operating Characteristic(ROC) curve and Area
Under Receiver Operating Characteristic(AUORC) are the
common methods used to evaluate the accuracy of fraud
detection model. In this manuscript, they are used to evaluate

TABLE 6. AUROC values.

our model. A useful tool scikit-learn [24] is used to draw a
ROC curve and calculate the AUROC value from our results.

In this section, the AUROC of our evaluation of real-world
dataset is presented, and it shows that our model works well
in the real-world scenario. Secondly, we will compare our
work with previous ones. Thirdly, there is a discussion about
influence over different parameters. Next, we will validate
our improvement in MMD module. Finally, we will analyze
the influence of DP on our model.

1) COOPERATIVE FRAUD DETECTION
Firstly we present the AUROC value of all the experiments to
show the accuracy of our model. They are shown in Table 6.
Our best result is AUROC = 0.808 in Experiment #6.
It makes full use of all the available feature. Experiment #2 to
#6 have similar performance, and they are all the better than
Experiment #1. The high accuracy shows that operator B can
find out fraudsters in his database with the help of our model,
which implies that our method works well in the real-world
scenario. Other experiments show the capability of our model
in a real-world scenario. Some single feature does not work
in our model like Experiment #7 and #8 while some feature
combination works well together like Experiment #11. In a
real-world scenario, more features do not guarantee higher
accuracy, as is shown that Experiment #6 (AUROC = 0.808)
with five features outperforms Experiment #12 (AUROC =
0.772) with seven features. Experiment #17-#21 show that
our privacy module will decrease accuracy, but it is afford-
able. To protect privacy in a real-world scenario is necessary,
and experiments show that our model can make a good com-
promise between accuracy and privacy.

Next, there is the ROC curves comparison between Exper-
iment #1 and #2 in Figure 3. Experiment #1 represents our
previous and Experiment #2 represents our current setting.
When there is the same number of fraud accounts, our current
setting has a lower false rate and has higher AUROC value.
It shows that our method works better on the real-world
records using the current setting.

Thirdly, it comes to the discussion of influence over differ-
ent parameters. In a real-world scenario, suitable parameters
need to be set according to the specific environment.

a) Data scale is concerned in Experiment #2 to #5.
When the fraud account number is fixed to 15,
two data scale 1000 CDRs(experiment #2) and
5000 CDRs(experiment #3) are compared in Fig.4,
which implies that fraud accounts are easier to be
detected in a smaller dataset. It is because the smaller
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FIGURE 3. Comparison between previous and current settings.

FIGURE 4. Data scale’s influences-same fraud number 15.

FIGURE 5. Data scale’s influences-same fraud ratio 1.5%.

the dataset is, our MMD module can distinguish dis-
tance between accounts more effectively.
When the fraud ratio is fixed to 1.5%, two data
scale 1000 CDRs(experiment #2) and 5000 CDRs
(experiment #4) are compared in Fig.5. There is no
much difference.When the CDR number is 5000, fraud
ratio is set to 0.3%(experiment #3), 1.5%(experiment
#4) and 4%(experiment #5) in Fig.6. Higher fraud ratio
dataset has higher AUROC value, but the ROC curve
of experiment #3 is steeper, and it even outperforms
experiment #5 at some points. This is because when
the fraud ratio is low, the account profiles generated
by LDA module can be accidentally concentrated.

FIGURE 6. Data scale’s influences-influence of fraud ratio.

FIGURE 7. Influence of number of fraud types.

Moreover, this can be confirmed by the non-
smoothness of the ROC curves.

b) Number of account types also have influence; it is
validated in experiment #5 and #6. Our dataset provides
five types of accounts, including fraud, telemarketing,
advertising, etc. There is only a fraud type in exper-
iment #6; as a contrast, there are five different types
of abnormal accounts in Experiment #5. See Fig.7.
It shows the detection method performs better on the
dataset with only one type fraud account: the AUROC
value(0.799) is higher, and experiment #6 has higher
True Positive Rate(TPR) when they have same False
Positive Rate(FPR). The reason is obvious: when there
are fewer types of abnormal accounts, interference is
also reduced so that the MMDmodule can detect fraud
account more easily.

c) Different features’ impact is observed and studied
in experiment #7 to #12. From the AUROC values
in Fig.8, some of them are even lower than 0.5. Only
Experiment #9 and #12 have relatively satisfactory
results. Experiment #9 use these features:duration,
ring_time, call_frequency, which are all numerical fea-
tures, while Experiment #10 and #11 use all non-
numerical features: clock , source, destination and
call_result . In general, numerical features have a
stronger impact on the detection performance, and non-
numerical features can only make a limited contribu-
tion. The result of Experiment #12(AUROC = 0.772)
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FIGURE 8. Influence of features.

TABLE 7. AUROC values and time cost.

shows that the MMD module has better performance
when the features are jointly used. The reason is that
when more features are combined, the MMD has more
dimensions to classify accounts.

We have made some optimization in MMDmodule’s algo-
rithm complexity, and Experiment #13 to #16 are set to
validate our improvement. Experiment #6 does not use this
clustering method, and its CDRs number is about 100000.
The AUROC value and time cost are in Table7. From the
table, it shows that our method takes much less time to finish
the MMD module while keeping relatively high AUROC
value. When the number of cluster points is less than 1% of
total CDRs number in Experiment #13 and #14, the MMD
matching module loses its detection function(AUROC value
are under 0.5). If the number of cluster points is set higher
than 1% of total CDRs number in Experiment #15, the MMD
module can predict through the AUROC value is just 0.621.
The compromised choice would be set cluster number to 10%
of total CDRs number in Experiment #16. We can keep a
relatively high prediction ability(AUROC = 0.732 ) while
it saves time cost up to 90%.

2) DIFFERENTIAL PRIVACY
To validate the practicability of ourmodel, we experiment in a
real-world scenario, and results are shown in this subsection.
In our model, Laplace noise is added to avoid attackers to get
private CDR data. However, the noise also can influence the
exact result of MMD. Thus, simulations are done to evaluate
the influence of noise on the result of MMD. We draw the
noise from Laplace distribution. Experiment #17 to #21 are
designed to study the influence of different levels of noise
on MMD results. In the meantime, we would evaluate the
data confidence level from the privacy attacker’s perspective,
because data with high-level noise can be meaningless to the

TABLE 8. AUROC values and time cost.

attackers. The results are in Table8. In the table, once the
noise level is higher than 1 (Experiment #20), our model
fails to detect the fraud accounts(AUROC = 0.452, which is
under 0.5). Moreover, when the noise level is lower than 0.1
(Experiment #17 and #18), the privacy attacker can get our
data with confidence level very close to 1, which would
threaten our data privacy. So a compromised option would
be Experiment #19, our model can keep a relatively high
AUROC value(0.719) while the privacy attacker can only get
data with confidence level 0.63 which means that our private
data is safe from differential attack.

VIII. CONCLUSION
In this manuscript, we succeed in validating the cooperative
fraud detection model over a real-world scenario. By a set
of comprehensive experiments, our methods, including LDA
to profile accounts and MMD to match fraud accounts, are
adaptive to the real-world dataset.We also validate the protec-
tion to private data of users during the cooperation of multiple
telecommunication operators.

Our enhanced and comprehensive evaluations show that
the improved detection model is capable of detecting fraud
accounts with high accuracy in real-world situations where
the data scale is larger, and the model is also suitable for real-
world features. Meantime applying privacy protection does
not affect the accuracy of detection with well-chosen level
Laplace noise.
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